首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   158篇
  国内免费   30篇
航空   332篇
航天技术   20篇
综合类   14篇
航天   30篇
  2024年   1篇
  2023年   5篇
  2022年   18篇
  2021年   17篇
  2020年   17篇
  2019年   15篇
  2018年   15篇
  2017年   18篇
  2016年   15篇
  2015年   17篇
  2014年   27篇
  2013年   21篇
  2012年   13篇
  2011年   20篇
  2010年   18篇
  2009年   17篇
  2008年   19篇
  2007年   11篇
  2006年   17篇
  2005年   16篇
  2004年   9篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
排序方式: 共有396条查询结果,搜索用时 33 毫秒
1.
《中国航空学报》2020,33(3):749-770
Angle of Attack (AOA) is a crucial parameter which directly affects the aerodynamic forces of an aircraft. The measurement of AOA is required to ensure a safe flight within its designed flight envelop. This paper intends to summarise a comprehensive survey on the measurement techniques and estimation methods for AOA, specifically in Unmanned Aerial Vehicle (UAV) applications. In the case of UAVs, weight constraint plays a major role as far as sensor suites are concerned. This results in selecting a suitable estimation method to extract AOA using the available data from the autopilot. The most feasible and widely employed AOA measurement technique is by using the Multi-Hole Probes (MHPs). The MHP measures the AOA regarding the pressure variations between the ports. Due to the importance of MHP in AOA measurement, the calibration methods for the MHP are also included in this paper. This paper discusses the AOA measurement using virtual AOA sensors, their importance and the operation.  相似文献   
2.
叶片式预旋喷嘴具有尺寸小,落后角大的特点。为了详细研究小尺寸预旋喷嘴的预旋性能,采用五孔探针对叶片式预旋喷嘴的出口流场进行了实验研究。测量了Ma=0.2,0.3时喷嘴出口的压力分布、速度分布和出口气流角度分布,实验获得了喷嘴的落后角和预旋效率,并进行了与实验工况相同的数值计算。通过实验获得的总压云图以及速度云图,可以发现叶片式预旋喷嘴的端壁二次流损失、尾迹损失严重,有明显的边界层分离现象。Ma=0.2时,喷嘴Re数为5.76×104,落后角2.84°,实验测得的预旋效率为0.73;Ma=0.3时,喷嘴Re数为1.06×105,预旋效率提高至0.77。实验模型端壁的影响使预旋效率实验结果偏低6.5%左右。数值结果与实验测得各参数符合较好:数值结果与测得的喷嘴出口截面平均总压、静压偏差在1%以内;出气速度、周向速度以及出气角度与实验结果偏差在4%以内。数值计算表明,叶片式预旋喷嘴的预旋效率基本不受压比影响,随Re数增大先增大后基本不变,最后基本稳定在0.85。  相似文献   
3.
四边形全天自主星图识别算法   总被引:7,自引:3,他引:7  
讨论了一种新的无须任何先验知识的星图识别算法。该算法将四边形星图模式分解为两个具有公共边的三角形模式,使用三角形模式的特征,在保证自满计算量和星载星表的存储容量的前提下,使算法的识别成功率得以星著提高。Monte Carlo实验表明,在星等误差0.5星等(3σ),位置误差10角秒(1σ)时,该算法的识别成功率接近100%。  相似文献   
4.
将虚拟样机技术用于双模制导系统的研制。以Pro/E为三维实体特征建模工具,MSC、ADAMS为运动学和动力学分析工具,Matlab为控制分析软件,对机械系统和控制系统进行联合分析和调试。给出了机械模型、控制模型和两者间的输入输出,以及目标运动模型的建立方法。试验结果表明,所设计的虚拟样机能用于动态校核、参数优化、回归设计和演示验证,并能进行运动分析和干涉检测、跟踪以及交班试验等。  相似文献   
5.
双模态冲压发动机高超进气道的实验研究   总被引:5,自引:4,他引:5       下载免费PDF全文
杨进军  张堃元  徐辉  徐惊雷 《推进技术》2001,22(6):473-475,499
设计了侧压角为6°,后掠角45°,斜楔板压缩角分别为4°和8°的两套带隔离段的高超三维侧压式进气道,通过风洞实验研究了来流马赫数、出口反压、斜楔板压缩角以及隔离段等对进气道性能的影响.实验结果表明,在高来流马赫数及较小的斜楔板压缩角时,进气道的流量系数、总压恢复系数较高.总增压比在不同斜楔板压缩角时基本保持不变.  相似文献   
6.
何中伟 《推进技术》1989,10(2):15-20,71
本文在一定附面层条件下,着重研究典型的强激波与紊流附面层干扰区下游扩压器出口的气流动态畸变,文中讨论了激波强度、扩压器壁面形状(直壁和曲壁)对动态畸变的影响.讨论了紊流度分布中四个峰值与相同截面上的总压沿高度分布的相互关系.最后对紊流度沿高度分布中的若干典型站的总压信号作功率谱密度和概率密度函数分析  相似文献   
7.
外端壁收缩与单向倾斜组合涡轮导叶的三维气动力研究   总被引:1,自引:0,他引:1  
低展弦比涡轮导叶的外端壁收缩与单向正倾斜组合设计是既可减小两端二次流损失又可以满足冲击冷却叶片叶身需平直要求的技术措施。本文简要阐述了组合设计可减小二次流损失的力学机制、流场特征及三维流场设计分析的评价准则。通过三维流场计算 ,详细分析了诸如单向倾斜角度、子午面外端壁轮廓收缩起点、内外曲率半径等主要特征参数对流场品质的影响。给出了组合设计的方法与步骤及评价流场的定性准则。该组合设计方法对低展弦比高温涡轮导向叶片的成功设计具有指导意义。  相似文献   
8.
陈雄  郑亚  周长省 《推进技术》2006,27(6):521-524
结合分区对接网格技术以及二阶精度区域分解算法,对高速旋转、含侧向支柱冲压增程弹丸进气道内外复杂流场进行了数值模拟。得到了高速旋转工况下对应于不同来流攻角和旋转角速度,临界工况时,超声速进气道内外流场复杂的波系结构。随着旋转角速度的提高,进气道总压恢复系数和动能效率均有所降低,而流场畸变指数则显著增大。特别是当转速达到20kr/min,进气道总压恢复系数和动能效率下降趋势以及流场畸变指数增大趋势更明显。攻角的存在对冲压发动机进气道的总体性能产生了负面影响。  相似文献   
9.
F/A-18E/F飞机发动机的CARET进气道   总被引:1,自引:1,他引:1       下载免费PDF全文
杨国才 《推进技术》1997,18(4):31-35
介绍了与F/A-18E/F飞机发动机提高性能相适应的、设计Ma=2.0的固定几何的“CARET”进气道的设计,分析了新设计的E/F进气道性能和机体/进气道一体化的模型风洞试验结果。该进气道新概念设计对我国在研或预研的某些机种都有较好的参考与借鉴价值。  相似文献   
10.
张学良 《推进技术》1994,15(2):12-16,57
在几何不可调的二元外压式斜板进气道的设计中,选择合理的斜板和唇口几何能数是最重要的问题之一。本文对一个设计马赫数为1.8的这类进气道的斜板和唇口参数进行了风洞试验研究。用缩尺模型风洞试验,对比分析了不同斜板角和不同外侧唇口内唇角,唇缘半径对进气道内流特性的影响,结果表明,对确定的进气道布局,斜板角小的变化对进气道超音速内流总压恢复系数,稳态出口流场周向畸变指数及喘振裕度的影响很大,唇口参数小的改变  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号